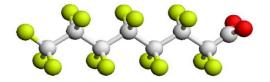
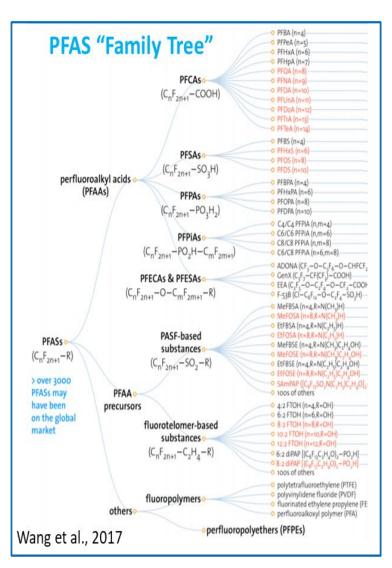
Basis of NJDEP MCLs for PFOA, PFOS & PFNA




Gloria B. Post, Ph.D., D.A.B.T. Division of Science & Research New Jersey Department of Environmental Protection

Schuykill Action Network - 2020 Water Utility Forum Albright College January 28, 2020

What are Per- and Polyfluoroalkyl Substances (PFAS)?

- 1000s of manufactured compounds.
 - Aliphatic compounds with at least one totally fluorinated carbon atom.
 - Produced for over 70 years.
- Due to structure of molecule:
 - Repel oil & water.
 - Highly water soluble.
- C-F bond is one of strongest known.
 - Chemically & thermally non-reactive.
- Unique properties are the basis for:
 - Commercial & industrial uses.
 - Extreme environmental persistence.
- Most have little or no health effects data.
- Most not detected by routine lab methods.

NJ Focus (so far...) Primarily on Long-Chain Perfluoroalkyl Acids (PFAAs)

F

PFOA

- Most well-known PFAS subgroup.
- Charged functional group & totally fluorinated carbon chain
 - Long chain:
 - > 8 carbons carboxylates
 - <u>></u> 6 carbons sulfonates.
 - More bioaccumulative & toxic than short-chain.
- Considerable health effects data.
- Detected by commercial lab methods.
- Although use in U.S. by major manufacturers has ended.....
 - Do not break down.
 - Environmental contamination persists indefinitely.
 - -Some <u>replacements</u> are of concern.

Long-chain PFAAs found in blood serum of almost all U.S. residents:

• **PFOA:** Perfluorooctanoic acid, C8

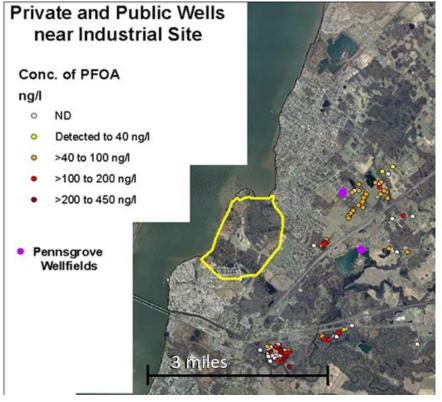
OH

.OH

PFOS

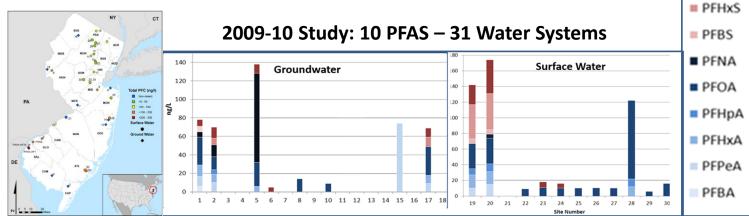
PFNA

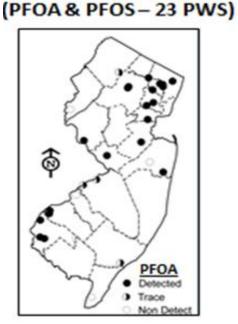
- **PFNA:** Perfluorononanoic acid; C9
- **PFOS:** Perfluorooctane sulfonate, C8-S
- **PFHxS:** Perfluorohexane sulfonate, C6-S



Initial NJDEP Awareness & Actions on PFOA in NJ Waters in 2004-07

- **2004:** Reported in **groundwater** at large industrial site in Southwest NJ.
- 2006: Nearby public water system.
 - Found in tap water by Delaware Riverkeeper Network.
 - Found in supply wells by potential industrial source.
 - Found later in nearby private wells.
- 2006-2007: <u>NJDEP Actions</u>:
 - Statewide drinking water occurrence study of PFOA and PFOS (2006).
 - Drinking water guidance (NJDEP, 2007;
 Post et al., 2009) 40 ng/L (ppt)
 Requested by affected water system.





NJDEP Studies of PFAS Occurrence in NJ Public Water Systems

- First state to conduct statewide PFAS occurrence studies.
 - 2006 study: 23 water systems PFOA and PFOS.
 - 2009-10 study: 31 water systems 10 PFAAs.
 - Reporting Levels 4-5 ng/L (ppt)
- Multiple PFAS (up to 8) found in many water systems.
 - **PFOA** most frequent, ~60% of systems.
 - **PFOS** 30% of systems.
 - PFNA Paulsboro, Gloucester County
 - Highest level reported in drinking water worldwide.
 - Industrial source was identified.
- Many NJ water systems took voluntary action.

2006 Study

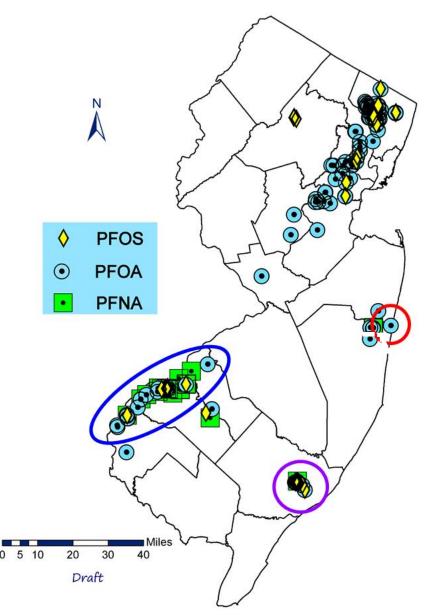
Post et al., 2009

PFOS

Post et al., 2013

New Jersey vs. National PFAS Drinking Water Occurrence: 2013-15 USEPA Unregulated Contaminated Monitoring Rule 3 (UCMR3) Study

Compound	Reporting	New J Public Wate		U.S. Public Water System Other than NJ		
· · · · · · · · · · · · · · · · · · ·	Level (ng/L)	# Detects*	% Detects	# Detects	% Detects	
PFOA (C8)	20	19/175	10.9%	98/4745	2.1%	
PFNA (C9)	20	4/175	2.3%	10/4745	0.2%	
PFOS (C8-S)	40	6/175	3.4%	89/4745	1.9%	
PFHxS (C6-S)	30	2/175	1.1%	53/4745	1.1%	
PFBS (C4-S)	90	0/175	0%	8/4745	0.2%	
PFHpA (C7)	10	6/175	3.4%	80/4745	1.7%	


- All large (>10,000 users) and a few small public water systems in U.S.
- Much higher reporting levels than NJDEP studies, but allow for comparison of NJ and national occurrence on same basis.
- **PFOA and PFNA** much more frequent in NJ than nationally.
 - PFNA Southwestern NJ (Gloucester and Camden Counties).
 - PFOA Various locations statewide.

Some Likely Sources of PFAS in NJ Public Water Systems

- **PFOA and PFOS in Northeast NJ**
 - Sources unknown for most sites.
 - Efforts to identify sources are ongoing.
- PFOA & PFNA in Southwest NJ.
 - Two large industrial sites.
 - Current NJDEP multi-media study of PFAAs & newly identified PFAS with USEPA ORD using non-target.
- **PFOA in surface water source**

- Small industrial facility upstream of river intake (Procopio et al., 2017).

- Multiple PFAAs (carboxylates & sulfonates)
 - Military use of aqueous film forming foam.

(Raw and finished water sampling locations shown; multiple data points shown for some public water systems. Does not include 2019 PFAS MCL monitoring data that has been reported to NJDEP)

NJ PFAS Evaluation & Regulation Continues NJ Work on Emerging Drinking Water Contaminants since 1980s

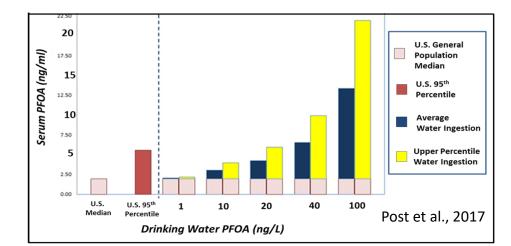
- **1980s** Volatile organic chemicals found in NJ waters in NJDEP study.
 - "Emerging contaminants" of the time No federal standards.
- 1984 New Jersey Safe Drinking Water Act Amendments
 - Required NJ Maximum Contaminant Levels (standards; MCLs) for:
 - 23 listed contaminants.
 - Additional future contaminants based on occurrence & health effects.
 - Established Drinking Water Quality Institute (DWQI) to recommend MCLs to NJDEP.
 - Members from environmental health community, academia, and water purveyors appointed by Governor, Senate, and Assembly.
 - Also Members from NJDEP and NJ Dept. of Health.
- NJDEP Commissioner decides whether to propose MCLs as regulatory standards.
- NJ scientists have evaluated many types of drinking water contaminants since 1984.

DWQI & NJDEP Evaluations (1984 – Present)

<u>Earlier Evaluations</u> (1984 - 2009)

- Volatile Organic Contaminants
- Methyl tertiary butyl ether (MTBE)
- Radium
- Arsenic
- Perchlorate
- Radon

...and many others



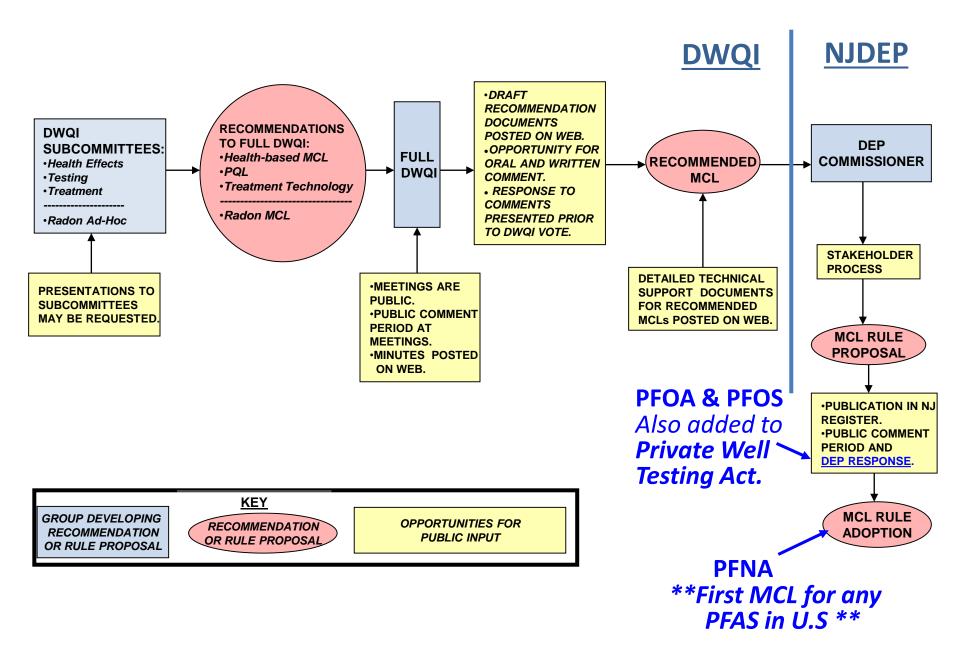
<u>Recent Evaluations</u> (2014 - present)

- 1,2,3-Trichloropropane*
- PFNA*
- PFOA & PFOS**
- 1,4-Dioxane currently underway
- * MCLs adopted by NJDEP in September 2018. FIRST MCL IN THE U.S. FOR ANY PFAS
- ** MCLs proposed by NJDEP on April 1, 2019.

Why Are Long-Chain Perfluoroalkyl Acids (PFAAs) of Particular Concern as Drinking Water Contaminants?

- Widespread drinking water occurrence.
- Do not break down in the environment "Forever Chemicals".
- Ubiquitous in human blood serum.
- Long human half-lives (~2-8 years).
 - Bioaccumulate over time.
 - Remain in the body for many years after exposure ends.
- Multiple types of animal toxicity, some at low doses.
- Evidence for multiple human health effects from low exposures.

- Low drinking water levels can dominate other exposures (e.g. food/food packaging, consumer products).
 - Unlike other persistent, bioaccumulative, and toxic (PBT) chemicals (PCBs & dioxins) Drinking water is not an important exposure route for these.
- Higher drinking water exposures to infants, a sensitive subgroup.
- Overall suggests need for caution about exposure from drinking water. 11


Factors Considered in NJ DWQI PFAS MCL Recommendations

- Health-based MCL (similar to USEPA MCLG).
- Practical Quantitation Level (PQL)

 Level reliably measured by drinking water laboratories.
- Availability of **treatment removal technology**.
- * Health-based MCL is the goal *
 - PFAS MCLs not limited by analytical or treatment factors.
- Therefore, PFAS MCLs are set at Health-based MCLs.

(Units: ng/L)	Health-based MCL	Analytical PQL	Treatment Removal	Recommended MCL
PFOA	14	6	Not limiting	14
PFOS	13	4.2	Not limiting	13
PFNA	13	5	Not limiting	13

Public Participation in NJ DWQI & DEP MCL Development Process

Current Status of NJDEP PFAS Regulations

PFNA:

- MCL & Ground Water Quality Standard 13 ng/L (2018).
- First MCL in the nation for any PFAS.
- Quarterly monitoring by public water systems has begun:
 - 2019: ~1100 systems: small groundwater systems (~400); nontransient noncommunity systems (~700).
 - Most are also voluntarily reporting PFOA & PFOS.
 - 2020: 145 systems: Large groundwater systems (118); all surface water systems (27).
- Added to NJ Hazardous Substances List (2018).

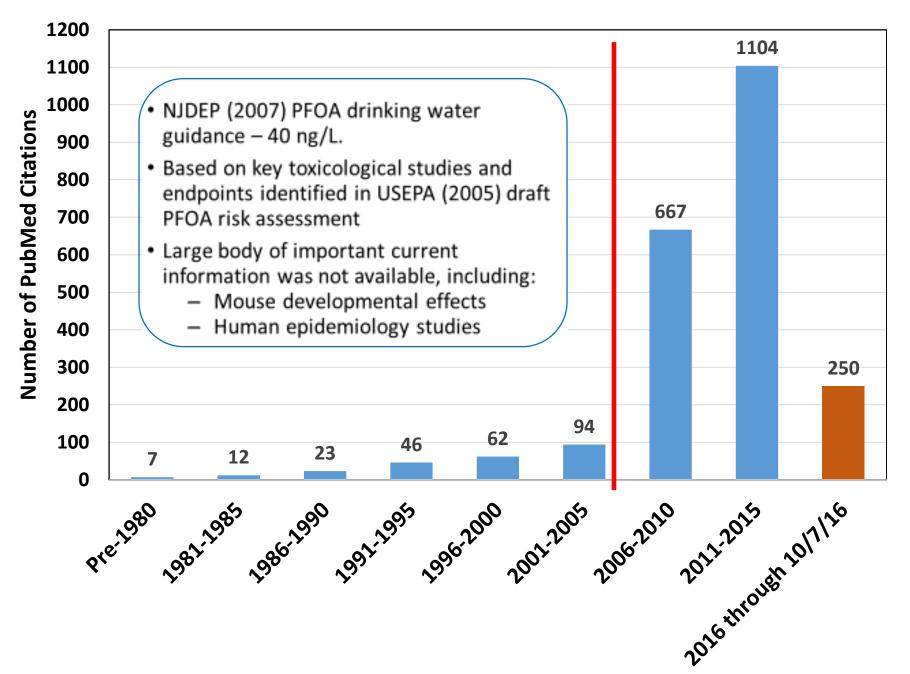
PFOA & PFOS:

- Interim Ground Water Quality Standards: PFOA-10 ng/L; PFOS-10 ng/L (March 2019).
- Rule proposal (April 2019):
 - MCLs & Ground Water Quality Standards: PFOA 14 ng/L; PFOS 13 ng/L.
 - Monitoring by all community and nontransient noncommunity systems to start in 1st quarter of 2021.
 - Add to NJ Hazardous Substances List.
 - Add to NJ Private Well Testing Act.
- In New Jersey, rule adoptions must occur within one year of proposal (April 2020).

NJDEP PFNA, PFOA & PFOS MCL Monitoring Framework & Requirements

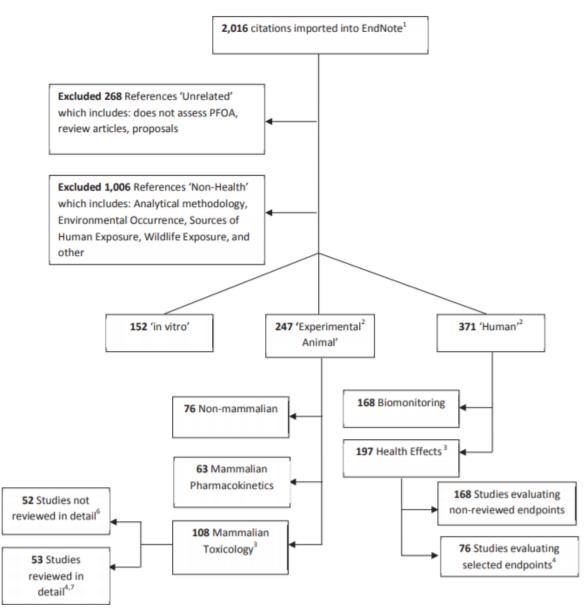
- Quarterly samples at each point of entry (POE).
 - MCL violations based on running annual average (RAA) of 4 consecutive quarters.
- Future monitoring frequency depends on levels detected:
 - Annual monitoring if RAA for 4 consecutive quarters "reliably & consistently" below MCL (< 50% of MCL).</p>
 - Triennial monitoring if three consecutive annual samples have <u>no</u> detections.
 - Quarterly monitoring required if treating for PFNA, PFOA, or PFOS.
- EPA Method 537 detects PFNA, PFOA, & PFOS.
 - Systems are encouraged to report data for PFOA and PFOS in 2019 and 2020.
 - "Grandfathering" Frequency may be reduced based on 2019 and 2020 data when anticipated PFOA and PFOS monitoring is required in 2021.
- MCL Violation:
 - Public notification within 30 days.
 - Compliance with MCL within one year.
 - Required notification in Consumer Confidence Report (CCR).
 - Financial resources available through DWSRF.
 - May be eligible for hazardous substance-based funding.

For more info: <u>https://www.state.nj.us/dep/wms/bears/docs/2019-4-15-FAQs_PFOS-PFOA-websites-OLA%204-24-19SDM-(003).pdf</u>


2019 PFNA, PFOA & PFOS Public Water System Monitoring Data Received by NJDEP as of 1/15/20*

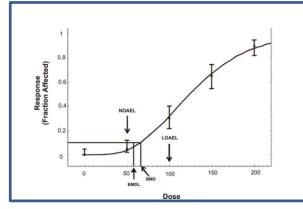
<u># of Systems</u>	PFNA (13 ng/L)	PFOA (14 ng/L) PFOS (13 ng/L)		
Submitting results	1108	1094	1094		
Detection(s) > final/proposed MCL	12 (1.1 %)	100 (8.5%)	80 (7.1%)		
Detection(s) > final/proposed MCL(s)	131 (11.7%) (52 CWS; 78 NTNC; 1 TNC)				
MCL violations	9 (0.8%) (1 CWS; 8 NTNC)	NA	NA		
Detection(s) > USEPA PFOA/PFOS HA (70 ng/L), singly or combined	NA		(1.2%) 5; 6 NTNC)		

*Some systems began treating for PFNA, PFOA and/or PFOS prior to 2019.


Human Health Basis for NJ PFAS MCLs

Great Increase in PFAS Research in Recent Years: Example-PFOA

DWQI PFOA Literature Review Strategy


More than 2000 citations identified and screened in 2016.

NJ DWQI, 2016

New Jersey Risk Assessment Approach for PFAS

Based on **Reference Doses** for most sensitive **<u>non-cancer</u>** endpoints from animal studies that are well-established, adverse, and relevant to humans.

Reference Dose (ng/kg/day) = <u>Point of Departure</u> Uncertainty Factors

Definition: "Daily oral dose to humans (including sensitive subgroups) likely to be **without appreciable risk** of deleterious effects during a lifetime."

Carcinogenicity evaluation:

- **PFOA** & **PFOS**: "Suggestive evidence for carcinogenicity in humans"
 - Cancer risk (at 1-in-1 million risk level used by NJ) was not driving factor.
- -**PFNA:** No chronic studies evaluating carcinogenicity.

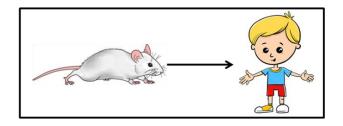
NOTE: New NTP (2019) chronic rat PFOA study was not considered.

- "Clear evidence" in males; "Some evidence" in females.
- Much higher tumor incidence than in earlier chronic studies.

New Jersey Conclusions: Human Epidemiology Data in Risk Assessment of Long-Chain PFAAs

- Human data preferred for risk assessment, if suitable.
- Evidence for multiple human health effects at low exposures:

↑ cholesterol (PFOA, PFOS, PFNA)
 ↑ uric acid (PFOA)


↑ liver enzymes (PFOA, PFNA)
↓ birth weight (PFOA)

vaccine response (PFOA, PFOS)
 infectious disease (PFOS)
 testicular & kidney cancer (PFOA)

- Generally concordant with toxic effects in animal studies.
- However, limitations preclude human data as basis for risk assessment.
 - Exposures to multiple PFAS are correlated, so dose-response for each PFAS cannot be determined.
- Conclusion: Human data provide support for public health protective approach based on animal toxicology data.
 - More human data than for many other drinking water contaminants.
 - Justify concern about additional exposure from drinking water

Animal-to-Human Comparison in New Jersey PFAS Risk Assessment

- Based on internal dose (blood serum level), not administered dose.
- Because half-life much longer in humans than animals → Same dose results in much higher internal dose (serum level) in humans than animals.
- NJ Reference Doses are based on animal studies that provide blood serum PFAS data.

	# of		R	at	lluman
	# of Carbons	Mouse	М	F	Human
PFOA	8	18 days	5 days	3 hours	~2-3 years
PFNA	9	50 days	30 days	1-2 days	Estimated as twice PFOA
PFOS	8	37 days	50 days		~3-5 years

Development of New Jersey PFAS Reference Doses

<u>Serum Level</u> Point of Departure (POD) for animal endpoint

(ng/ml; BMDL, NOAEL, or LOAEL)

Apply Uncertainty Factors

(Note: Animal-to-Human – 3; Toxicokinetic differences accounted for by use of serum level as dose metric)

Target Human Serum Level (ng/ml; µg/L)

Apply Clearance Factor:

Target Human Serum Level (μg/L) x **Clearance (L/kg/day)** = RfD (μg/kg/day)

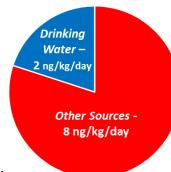
Reference Dose (µg/kg/day)

NOTE: Order of application of Uncertainty Factors and Clearance Factors may be reversed in some other states' processes - **Does not affect resulting Reference Dose.**

Reference Dose is Combined with Drinking Water Exposure Assumptions to Derive Health-based MCL

Health-based MCL =

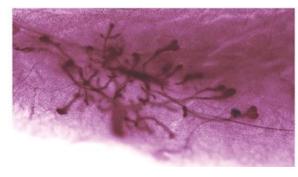
Reference Dose (mg/kg/day) x Body Wt. (kg) x Relative Source Contribution (%) Drinking Water Consumption (L/day)


Drinking Water Ingestion Rate (L/kg/day)

- NJ Default adult assumptions (70 kg body wt.; 2 L/day)
- Other assessments use higher rates \rightarrow lower drinking water levels:
 - Higher default adult rate CA
 - Rates for sensitive subgroups.
 - Lactating women (higher) USEPA, MA.
 - Infants (highest) VT.
 - Minnesota Dept. of Health model for prenatal and infant exposure MN,NH,MI.

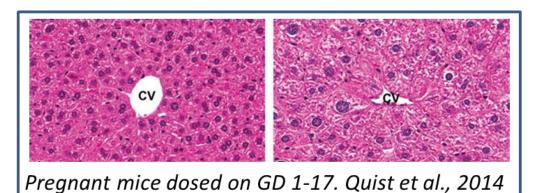
Relative Source Contribution (RSC):

- Accounts for non-drinking water exposures (e.g. food, consumer products, air). Higher RSC → higher drinking water level:
 - Default RSC: 20% of Reference Dose from drinking water;
 80% from other sources.
 - Higher chemical-specific RSCs when chemical-specific data available.



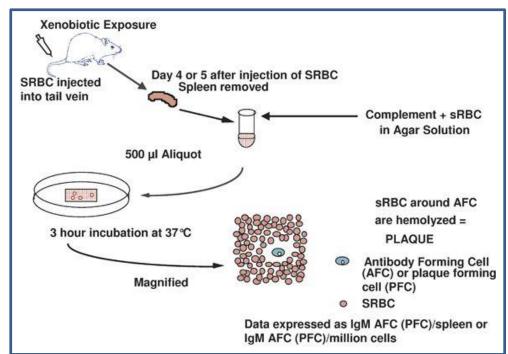
NJ PFOA Reference Dose: Delayed Mammary Gland Development

- Most sensitive effect with serum PFOA data.
- Well established 9 mouse studies
 - Only 1 negative study with problematic issues.
- Adverse Structural changes persist until adulthood.
- Considered relevant to humans:
 - Based on Mode of Action evaluation.
 - PFOA associated with \checkmark duration of breastfeeding in several human studies.
- Reference Dose: 0.11 ng/kg/day; below general population exposure.
 - Benchmark Dose (Post et al., 2012; data from Macon et al., 2011).
 - \downarrow mammary gland developmental score
 - \downarrow number of terminal end buds.
- Health-based MCL would be 0.77 ng/L <u>Not recommended</u> although scientifically valid:


- **Rationale:** No precedent for this effect as primary basis for risk assessment.

• Uncertainty Factor for more sensitive effects, including on mammary gland.

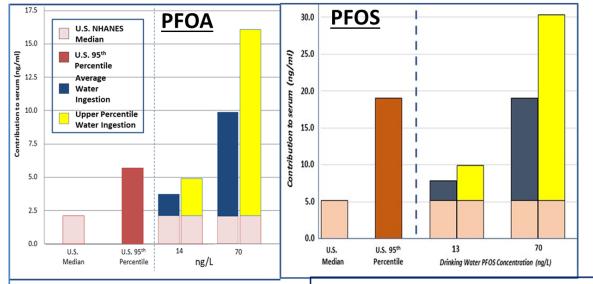
NJ PFOA Reference Dose: Increased Liver Weight


- Increased liver weight and hepatocellular hypertrophy (enlarged liver cells) well-established effects in monkeys and rodents.
- Most sensitive effect with serum PFOA data, except mammary gland.

- **Co-occur with and/or progress** to more severe liver effects (*e.g. necrosis liver cell damage*).
- Considered relevant to humans based on detailed Mode of Action evaluation.
- Reference Dose (2 mg/kg/day)
 - Based on increased liver weight in mice (Loveless et al., 2007).
 - Includes additional uncertainty factor for delayed mammary gland development and other low-dose developmental effects.

NJ PFOS Reference Dose: Decreased Immune Response (Pachkowski et al. 2019. Env. Research)

- Based on decreased plaque forming cell response in mice (Dong et al., 2009).
 Measures antibody response to foreign antigen.
- Well established 4 positive studies; only 1 negative study.
- Considered relevant to humans.
- Consistent with human data:
 - → response to vaccination analogous effect.
 - ↑ incidence of infectious
 disease.
- Reference Dose 1.8 ng/kg/day.
- Other federal and state PFOS evaluations:
 - National Toxicology Program (2016) systematic review: Presumed human immune hazard.
 - ATSDR (2018 draft) and at least 5 other states (CA, MI, MN, NH, NY):
 PFOS assessments also based on decreased immune response.

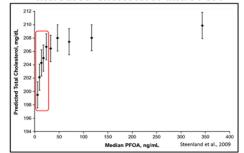


NJ, USEPA, ATSDR & European Food Safety Authority (EFSA) Toxicity Factors (ng/kg/day) for PFOA & PFOS

		<u>PFOA</u>		<u>PFOS</u>		
Agency	Species	Basis	Tox. Factor	Basis	Tox. Factor	
USEPA Reference Dose		Developmental: Delayed bone development & earlier male puberty (mouse) ↑ Liver weight (mouse): • Uncertainty factor of 10 - Mammary gland delay.		Developmental: ↓ offspring body wt. (rat)	20	
NJ Reference Dose	Animal			Immune suppression (mouse)	1.8	
ATSDR <i>Draft</i> Minimal Risk Level		Developmental: Behavioral & skeletal changes (mouse)	3	 ↓ Offspring body weight (rat); • With uncertainty factor for immune toxicity (mouse) 	2	
EFSA Tolerable Daily Intake	Human	↑ cholesterol (also ↑ liver enzyme ALT, ↓ birth weight)	0.8	 ↑ cholesterol; ↓ vaccine response; ↓ birth weight 	1.8	

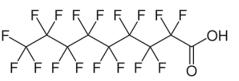
Increases in Serum PFOA & PFOS Predicted from New Jersey MCLs (13-14 ng/L) & USEPA Health Advisories (70 ng/L)

"NJ Drinking Water Quality Institute Health Effects Subcommittee concludes that these [blood serum PFAS] increases [at 70 ng/L] are **not desirable and may not be protective of public health.**"



Michigan PFAS Science Advisory Panel Report (Dec. 2018)

SCIENTIFIC EVIDENCE AND RECOMMENDATIONS FOR MANAGING PFAS CONTAMINATION IN MICHIGAN


A A A A
 al al al al al
Michigan PFAS Science Advisory Panel
Dr. Scott Bartell Dr., Jernifer Field
Dr. Dani James Dr. Christopher Law
Dr. Susan Mesteri Dr. David Sevila (Chair)

"If one accepts the probable links between PFOA exposure and adverse health effects detected in the epidemiological literature as critical effects for health risk assessment, then 70 ppt in drinking water might not be sufficiently protective for PFOA." Steep Dose-Response at Low Exposure Levels – Increased Cholesterol and PFOA

Other associations at low serum levels include \uparrow liver enzymes, \downarrow vaccine response, and \downarrow birth weight.

New Jersey PFNA Reference Dose: Increased Liver Weight

- "NJ-specific contaminant" not evaluated by USEPA.
- Toxicity (hepatic, developmental, immune, male reproductive) generally **similar to PFOA** but:
 - More bioaccumulative human half-life estimated at twice PFOA's.
 - Effects at lower doses.
 - Some effects are more severe.
- Reference Dose based on **↑ liver weight** in pregnant mice (Das et al., 2015)
 - Only study at the time with necessary serum PFNA data.
- Liver damage (necrosis) much more sensitive effect, but could not be used:
 - Numerical serum PFNA data needed for risk assessment exists, but was not provided by study sponsors.
 - Uncertainty factor of 3 for more sensitive effects.
- Reference Dose 0.74 ng/kg/day (3-fold lower than PFOA)
- NJ conclusions supported by recent National Toxicology Program 28-day rat study.

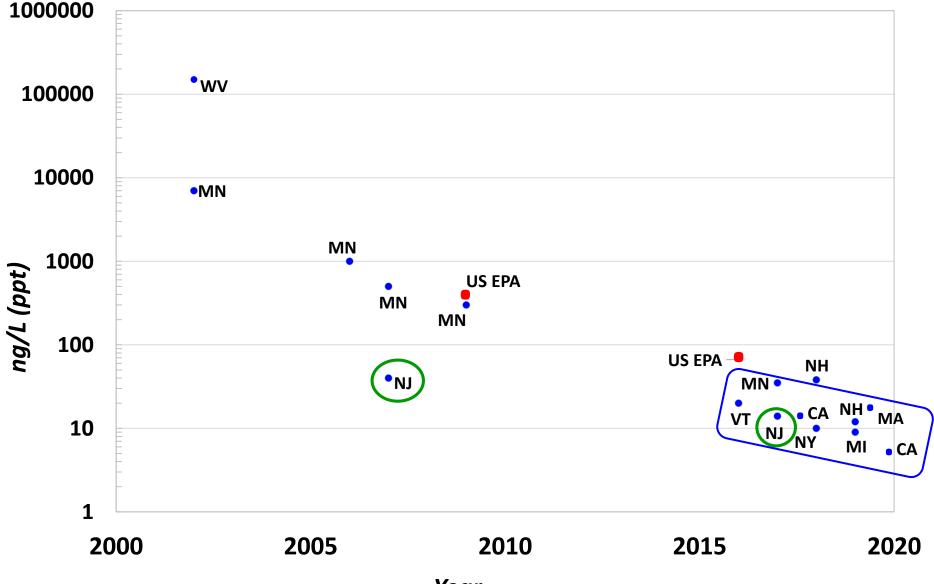
USEPA & State PFAS Drinking Water Guidelines (ng/L; ppt)

(Includes Standards & Guidance Values - Proposed, Recommended & Final)

	PFOA	PFOS	PFNA	PFHxS	PFHpA	PFDA	Total?	PFBA	PFHxA	PFBS	GenX
EPA	70	70					Yes (2)				
CA*	5.1	6.5					No				
СТ	70	70	70	70	70		Yes (5)				
MA**	20	20	20	20	20	20	Yes (6)			2000	
MI**	8	16	6	51			No		400,000	420	370
MN	35	15		47			No	7000		2000	
NH	12	15	11	18			No				
NJ	14**	13**	13				No				
NY**	10	10					No				
NC											140
VT	20	20	20	20	20		Yes (5)				

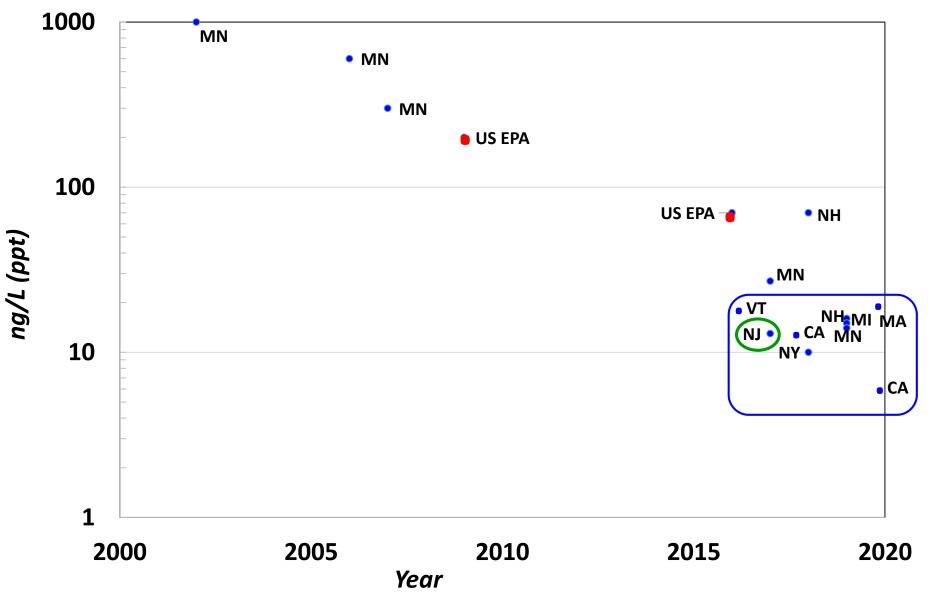
States not listed generally use USEPA Health Advisories of 70 ng/L for PFOA and PFOS as guidance.

*Notification Levels: based on analytical limits; health-based levels < PQLs. **Proposed, recommended, or draft.


Setting T Drinking Standard		Seven states, including Pennsylvaria and New Jersey, at different stages of a multive process for setting their own drinking-water standards fore and PFOS, the two perfluoreal substances (PFAS) that have b the focus of most efforts. The EPA has said it will take
Pennsylvania	The set	several years to establish PFA5 standards. Pennsylvania is wor to establish its own standards
Vermont		within two years.
Michigan		
Massachusetts	EN LINE	Proposed a standard
New Hampshire	1000	COLUMN TO A COLUMN
New York	In the second	CARL CONTRACTOR
New Jersey		Final stand has be adop
New Jersey (for PFNA)*		

States act as water

safety at


2018.	New Je	isey:	became	the first	state to e	establish a	drinking-	water standard for PFNA.
thar t	ype of	PEAS	. It is the	i chily end	prosable	standard	in the cou	ntry to date

State & USEPA PFOA Drinking Water Guidelines: 2002-2020 (Note Logarithmic Scale)

Year

State & USEPA PFOS Drinking Water Guidelines: 2002-2020 (Note Logarithmic Scale)

Interstate Technology & Regulatory Council (ITRC) Tables of PFAS Standards & Guidance Values

Section 4 Tables Excel file (updated December 2019)

- Table 4-1 presents the available PFAS water values established by the USEPA, each pertinent state, or country (Australia, Canada and Western European countries).
- Table 4-2 presents the available PFAS soil values established by the USEPA, each pertinent state, or country (Australia, Canada and Western European countries).

Section 5 Tables Excel file (updated January 2019)

- Table 5-1 summarizes the differences in the PFOA values for drinking water in the United States.
- Table 5-2 summarizes the differences in the PFOS values for drinking water in the United States.

Posted at: https://pfas-1.itrcweb.org/fact-sheets/

Many current and former colleagues from:

New Jersey Department of Environmental Protection

New Jersey Department of Health

and the

New Jersey Drinking Water Quality Institute

contributed to the work presented here.

Thank you!

For questions or additional information:

gloria.post@dep.nj.gov

(609) 292-8497

NJDEP Rules and Regulations Websites

- Adopted rules: <u>https://www.nj.gov/dep/rules/adoptions.html</u>
- Proposed rules: <u>https://www.nj.gov/dep/rules/notices.html</u>

NJDEP Drinking Water Program PFAS Q&As

 <u>https://www.state.nj.us/dep/wms/bears/docs/2019-</u> <u>4-15-FAQs_PFOS-PFOA-websites-OLA%204-24-</u> <u>19SDM-(003).pdf</u>

Links to NJDEP & NJ Drinking Water Quality Institute PFAS Reports

NJ Drinking Water Quality Institute Maximum Contaminant Levels Recommendations

• Perfluorooctane Sulfonate (PFOS), June 2018

<u>Appendix A</u> – Health-Based Maximum Contaminant Level Support Document for PFOS

Appendix B – Report on the Development of a Practical Quantitation Level for PFOS in Drinking Water

<u>Appendix C</u> – Second Addendum to Appendix C: Recommendation on Perfluorinated Compound Treatment Options for Drinking Water

<u>Appendix D</u> – Responses to Comments on DWQI Health Effects Subcommittee Report: "Public Review Draft - Health-Based Maximum Contaminant Level Support Document: PFOS"

- <u>Perfluorooctanoic Acid</u> (PFOA), March 2017
 - Appendix A Health-Based Maximum Contaminant Level Support Document" PFOA

<u>Appendix B</u> – Report on the Development of a Practical Quantitation Level for PFOA in Drinking Water

<u>Appendix C</u> – Addendum to Appendix C: Recommendation on Perfluorinated Compound Treatment Options for Drinking Water

<u>Appendix D</u> – Responses to Comments on DWQI Health Effects Subcommittee Report: "Public Review Draft-Health-Based Maximum Contaminant Level Support Document: PFOA"

Perfluorononanoic Acid (PFNA), July 2015

Appendix A – Health-Based Maximum Contaminant Level Support Document: PFNA

Appendix B – Report on the development of a Practical Quantitation Level for PFNA

<u>Appendix C</u> – Recommendation on Perfluorinated Compound Treatment Options for Drinking Water

NJDEP Studies

- <u>Investigation of Levels of Perfluorinated Compounds in New Jersey Fish, Surface Water, and Sediment (2018)</u>
- Identification of Perfluorinated Carboxylic Acids (PFCAs) in the Metedeconk River Watershed (February 2016)
 <u>Research Project Summary</u> <u>Full Report</u>
- Occurrence of Perfluorinated Chemicals in Untreated New Jersey Drinking Water Sources (2009-10 Study)
- Determination of Perfluorooctanoic Acid (PFOA) in Aqueous Samples (2006 Study). <u>https://www.nj.gov/dep/dsr/dw/final_pfoa_report.pdf</u>

NJDEP PFAS Publications

- Pachkowski, B., Post, G.B., Stern, A.H. (2019). The derivation of a Reference Dose (RfD) for perfluoroctane sulfonate (PFOS) based on immune suppression. Env. Research 171:452-469
- Post, G.B., Gleason, J.A., Cooper, K.R. (2017). Key scientific issues in developing drinking water guidelines for perfluoroalkyl acids: Contaminants of emerging concern. PLoS Biol. 15(12):e2002855. Open access at https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2002855&type=printable
- Procopio, N.A., Karl, R., Goodrow, S.M., Maggio, J., Louis, J.B., Atherholt, T.B. (2017). Occurrence and source identification of perfluoroalkyl acids (PFAAs) in the Metedeconk River Watershed, New Jersey. Environ Sci Pollut Res Int. 24:27125-27135.
- Gleason, J.A., Post, G.B, and Fagliano, J.A. (2015). Associations of perfluorinated chemicals (PFCs) serum concentrations and select biomarkers of health in the US population (NHANES), 2007-2010 Env. Research 136: 8-14.
- Post, G.B., Louis, J.B., Lippincott, R.L., and Procopio, N.A. (2013). Occurrence of perfluorinated chemicals in raw water from New Jersey public drinking water systems. Env. Sci. Technol. 47 (23):13266-75.
- Post, G.B., Cohn, P.D., and Cooper, K.R. (2012). Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Env. Res. 116: 93-117.
- Post, G.B., Louis, J.B., Cooper, K.R., Boros-Russo, B.J., and Lippincott, R.L. (2009). Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems. Environ. Sci, Technol. 43: 4547–4554.